Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.213
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732011

Immunoglobulin G-based monoclonal antibodies (mAbs) have been effective in treating various diseases, but their large molecular size can limit their penetration of tissue and efficacy in multifactorial diseases, necessitating the exploration of alternative forms. In this study, we constructed a phage display library comprising single-domain antibodies (sdAbs; or "VHHs"), known for their small size and remarkable stability, using a total of 1.6 × 109 lymphocytes collected from 20 different alpacas, resulting in approximately 7.16 × 1010 colonies. To assess the quality of the constructed library, next-generation sequencing-based high-throughput profiling was performed, analyzing approximately 5.65 × 106 full-length VHH sequences, revealing 92% uniqueness and confirming the library's diverse composition. Systematic characterization of the library revealed multiple sdAbs with high affinity for three therapeutically relevant antigens. In conclusion, our alpaca sdAb phage display library provides a versatile resource for diagnostics and therapeutics. Furthermore, the library's vast natural VHH antibody repertoire offers insights for generating humanized synthetic sdAb libraries, further advancing sdAb-based therapeutics.


Camelids, New World , Peptide Library , Single-Domain Antibodies , Single-Domain Antibodies/genetics , Single-Domain Antibodies/immunology , Single-Domain Antibodies/chemistry , Animals , Camelids, New World/immunology , High-Throughput Nucleotide Sequencing , Humans , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/genetics , High-Throughput Screening Assays/methods , Antibody Affinity , Cell Surface Display Techniques/methods
2.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 354-361, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38710518

Objective To prepare a monoclonal antibody (mAb) against mouse NOD-like receptor family pyrin domain-containing 3 (NLRP3) and assess its specificity. Methods A gene fragment encoding mouse NLRP3 exon3 (Ms-N3) was inserted into the vector p36-G3-throhFc to construct a recombinant plasmid named Ms-N3-throhFc. This plasmid was then transfected into HEK293F cells for eukaryotic expression. NLRP3-/- mice were immunized with Ms-N3 protein purified using a protein A chromatography column, and splenocytes from the immunized mice were fused with SP2/0 myeloma cells to generate hybridoma cells. Specific mAbs against murine NLRP3 from hybridoma cells were screened using ELISA and immunofluorescence assay(IFA). Results The Ms-N3-throhFc recombinant plasmid was successfully constructed and exhibited stable expression in HEK293F cells. Twelve hybridoma cell lines were initially screened using ELISA. IFA revealed that the mAb secreted by the 9-B8-3-2-C5 cell line specifically recognized the native form of mouse NLRP3 protein. The heavy and light chain subtypes of this mAb were identified as IgM and κ, respectively. Conclusion A monoclonal antibody against mouse NLRP3 has been successfully prepared.


Antibodies, Monoclonal , Hybridomas , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/genetics , Humans , Mice , HEK293 Cells , Hybridomas/immunology , Enzyme-Linked Immunosorbent Assay , Antibody Specificity/immunology , Female , Mice, Inbred BALB C
3.
Front Immunol ; 15: 1341389, 2024.
Article En | MEDLINE | ID: mdl-38698845

Monoclonal antibodies (mAbs) are one of the most important classes of biologics with high therapeutic and diagnostic value, but traditional methods for mAbs generation, such as hybridoma screening and phage display, have limitations, including low efficiency and loss of natural chain pairing. To overcome these challenges, novel single B cell antibody technologies have emerged, but they also have limitations such as in vitro differentiation of memory B cells and expensive cell sorters. In this study, we present a rapid and efficient workflow for obtaining human recombinant monoclonal antibodies directly from single antigen-specific antibody secreting cells (ASCs) in the peripheral blood of convalescent COVID-19 patients using ferrofluid technology. This process allows the identification and expression of recombinant antigen-specific mAbs in less than 10 days, using RT-PCR to generate linear Ig heavy and light chain gene expression cassettes, called "minigenes", for rapid expression of recombinant antibodies without cloning procedures. This approach has several advantages. First, it saves time and resources by eliminating the need for in vitro differentiation. It also allows individual antigen-specific ASCs to be screened for effector function prior to recombinant antibody cloning, enabling the selection of mAbs with desired characteristics and functional activity. In addition, the method allows comprehensive analysis of variable region repertoires in combination with functional assays to evaluate the specificity and function of the generated antigen-specific antibodies. Our approach, which rapidly generates recombinant monoclonal antibodies from single antigen-specific ASCs, could help to identify functional antibodies and deepen our understanding of antibody dynamics in the immune response through combined antibody repertoire sequence analysis and functional reactivity testing.


Antibodies, Monoclonal , Antibody-Producing Cells , COVID-19 , Recombinant Proteins , SARS-CoV-2 , Humans , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Antibody-Producing Cells/immunology , SARS-CoV-2/immunology , COVID-19/immunology , Antibodies, Viral/immunology , Female
4.
Biotechnol J ; 19(4): e2300505, 2024 Apr.
Article En | MEDLINE | ID: mdl-38651269

Chinese hamster ovary (CHO) cells are the commonly used mammalian host system to manufacture recombinant proteins including monoclonal antibodies. However unfavorable non-human glycoprofile displayed on CHO-produced monoclonal antibodies have negative impacts on product quality, pharmacokinetics, and therapeutic efficiency. Glycoengineering such as genetic elimination of genes involved in glycosylation pathway in CHO cells is a viable solution but constrained due to longer timeline and laborious workflow. Here, in this proof-of-concept (PoC) study, we present a novel approach coined CellEDIT to engineer CHO cells by intranuclear delivery of the CRISPR components to single cells using the FluidFM technology. Co-injection of CRISPR system targeting BAX, DHFR, and FUT8 directly into the nucleus of single cells, enabled us to generate triple knockout CHO-K1 cell lines within a short time frame. The proposed technique assures the origin of monoclonality without the requirement of limiting dilution, cell sorting or positive selection. Furthermore, the approach is compatible to develop both single and multiple knockout clones (FUT8, BAX, and DHFR) in CHO cells. Further analyses on single and multiple knockout clones confirmed the targeted genetic disruption and altered protein expression. The knockout CHO-K1 clones showed the persistence of gene editing during the subsequent passages, compatible with serum free chemically defined media and showed equivalent transgene expression like parental clone.


CRISPR-Cas Systems , Cricetulus , Gene Editing , CHO Cells , Animals , CRISPR-Cas Systems/genetics , Gene Editing/methods , Antibodies, Monoclonal/genetics , Recombinant Proteins/genetics , Gene Knockout Techniques/methods , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Cricetinae , Genetic Engineering/methods
5.
MAbs ; 16(1): 2342243, 2024.
Article En | MEDLINE | ID: mdl-38650451

The controlled expression of two or more proteins at a defined and stable ratio remains a substantial challenge, particularly in the bi- and multispecific antibody field. Achieving an optimal ratio of protein subunits can facilitate the assembly of multimeric proteins with high efficiency and minimize the production of by-products. In this study, we propose a solution based on alternative splicing, enabling the expression of a tunable and predefined ratio of two distinct polypeptide chains from the same pre-mRNA under the control of a single promoter. The pre-mRNA used in this study contains two open reading frames situated on separate exons. The first exon is flanked by two copies of the chicken troponin intron 4 (cTNT-I4) and is susceptible to excision from the pre-mRNA by means of alternative splicing. This specific design enables the modulation of the splice ratio by adjusting the strength of the splice acceptor. To illustrate this approach, we developed constructs expressing varying ratios of GFP and dsRED and extended their application to multimeric proteins such as monoclonal antibodies, achieving industrially relevant expression levels (>1 g/L) in a 14-day fed-batch process. The stability of the splice ratio was confirmed by droplet digital PCR in a stable pool cultivated over a 28-day period, while product quality was assessed via intact mass analysis, demonstrating absence of product-related impurities resulting from undesired splice events. Furthermore, we showcased the versatility of the construct by expressing two subunits of a bispecific antibody of the BEAT® type, which contains three distinct subunits in total.


Alternative Splicing , Animals , Protein Subunits/genetics , Humans , Chickens , Antibodies, Bispecific/genetics , Antibodies, Bispecific/biosynthesis , CHO Cells , Exons/genetics , Cricetulus , Green Fluorescent Proteins/genetics , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/biosynthesis , RNA Precursors/genetics
6.
Viruses ; 16(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38675896

Neutralizing antibodies (NtAbs) against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are indicators of vaccine efficacy that enable immunity surveillance. However, the rapid mutation of SARS-CoV-2 variants prevents the timely establishment of standards required for effective XBB vaccine evaluation. Therefore, we prepared four candidate standards (No. 11, No. 44, No. 22, and No. 33) using plasma, purified immunoglobulin, and a broad-spectrum neutralizing monoclonal antibody. Collaborative calibration was conducted across nine Chinese laboratories using neutralization methods against 11 strains containing the XBB and BA.2.86 sublineages. This study demonstrated the reduced neutralization potency of the first International Standard antibodies to SARS-CoV-2 variants of concern against XBB variants. No. 44 displayed broad-spectrum neutralizing activity against XBB sublineages, effectively reduced interlaboratory variability for nearly all XBB variants, and effectively minimized the geometric mean titer (GMT) difference between the live and pseudotyped virus. No. 22 showed a broader spectrum and higher neutralizing activity against all strains but failed to reduce interlaboratory variability. Thus, No. 44 was approved as a National Standard for NtAbs against XBB variants, providing a unified NtAb measurement standard for XBB variants for the first time. Moreover, No. 22 was approved as a national reference reagent for NtAbs against SARS-CoV-2, offering a broad-spectrum activity reference for current and potentially emerging variants.


Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Neutralization Tests , SARS-CoV-2 , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , COVID-19/immunology , COVID-19/virology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/genetics , COVID-19 Vaccines/immunology , China , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics
7.
Int J Biol Macromol ; 266(Pt 2): 131379, 2024 May.
Article En | MEDLINE | ID: mdl-38580014

Monoclonal antibodies (mAbs) are laboratory-based engineered protein molecules with a monovalent affinity or multivalent avidity towards a specific target or antigen, which can mimic natural antibodies that are produced in the human immune systems to fight against detrimental pathogens. The recombinant mAb is one of the most effective classes of biopharmaceuticals produced in vitro by cloning and expressing synthetic antibody genes in a suitable host. Yeast is one of the potential hosts among others for the successful production of recombinant mAbs. However, there are very few yeast-derived mAbs that got the approval of the regulatory agencies for direct use for treatment purposes. Certain challenges encountered by yeasts for recombinant antibody productions need to be overcome and a few considerations related to antibody structure, host engineering, and culturing strategies should be followed for the improved production of mAbs in yeasts. In this review, the drawbacks related to the metabolic burden of the host, culturing conditions including induction mechanism and secretion efficiency, solubility and stability, downstream processing, and the pharmacokinetic behavior of the antibody are discussed, which will help in developing the yeast hosts for the efficient production of recombinant mAbs.


Antibodies, Monoclonal , Recombinant Proteins , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/genetics , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Humans , Yeasts/metabolism , Yeasts/genetics , Animals , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
8.
Methods Mol Biol ; 2768: 211-239, 2024.
Article En | MEDLINE | ID: mdl-38502396

The affinity distribution of the antigen-specific memory B cell (Bmem) repertoire in the body is a critical variable that defines an individual's ability to rapidly generate high-affinity protective antibody specificities. Detailed measurement of antibody affinity so far has largely been confined to studies of monoclonal antibodies (mAbs) and are laborious since each individual mAb needs to be evaluated in isolation. Here, we introduce two variants of the B cell ImmunoSpot® assay that are suitable for simultaneously assessing the affinity distribution of hundreds of individual B cells within a test sample at single-cell resolution using relatively little labor and with high-throughput capacity. First, we experimentally validated that both ImmunoSpot® assay variants are suitable for establishing functional affinity hierarchies using B cell hybridoma lines as model antibody-secreting cells (ASC), each producing mAb with known affinity for a defined antigen. We then leveraged both ImmunoSpot® variants for characterizing the affinity distribution of SARS-CoV-2 Spike-specific ASC in PBMC following COVID-19 mRNA vaccination. Such ImmunoSpot® assays promise to offer tremendous value for future B cell immune monitoring efforts, owing to their ease of implementation, applicability to essentially any antigenic system, economy of PBMC utilization, high-throughput capacity, and suitability for regulated testing.


B-Lymphocytes , Leukocytes, Mononuclear , Leukocytes, Mononuclear/metabolism , Enzyme-Linked Immunospot Assay , Antigens , Antibody-Producing Cells , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism
9.
Antiviral Res ; 225: 105867, 2024 May.
Article En | MEDLINE | ID: mdl-38521465

Monoclonal antibody-based therapeutics have achieved remarkable success in treating a wide range of human diseases. However, conventional systemic delivery methods have limitations in insufficient target tissue permeability, high costs, repeated administrations, etc. Novel technologies have been developed to address these limitations and further enhance antibody therapy. Local antibody delivery via respiratory tract, gastrointestinal tract, eye and blood-brain barrier have shown promising results in increasing local concentrations and overcoming barriers. Nucleic acid-encoded antibodies expressed from plasmid DNA, viral vectors or mRNA delivery platforms also offer advantages over recombinant proteins such as sustained expression, rapid onset, and lower costs. This review summarizes recent advances in antibody delivery methods and highlights innovative technologies that have potential to expand therapeutic applications of antibodies.


Genetic Vectors , Immunologic Factors , Humans , Plasmids , Antibodies, Monoclonal/genetics , RNA, Messenger , Drug Delivery Systems/methods
10.
Vet Immunol Immunopathol ; 270: 110730, 2024 Apr.
Article En | MEDLINE | ID: mdl-38422854

Details on the origin and function of the immune system are beginning to emerge from genomic studies tracing the origin of B and T cells and the major histocompatibility complex. This is being accomplished through identification of DNA sequences of ancestral genes present in the genomes of lineages of vertebrates that have evolved from a common primordial ancestor. Information on the evolution of the composition and function of the immune system is being obtained through development of monoclonal antibodies (mAbs) specific for the MHC class I and II molecules and differentially expressed on leukocytes differentiation molecules (LDM). The mAbs have provided the tools needed to compare the similarities and differences in the phenotype and function of immune systems that have evolved during speciation. The majority of information currently available on evolution of the composition and function of the immune system is derived from study of the immune systems in humans and mice. As described in the present review, further information is beginning to emerge from comparative studies of the immune systems in the extant lineages of species present in the two orders of ungulates, Perissodactyla and Artiodactyla. Methods have been developed to facilitate comparative research across species on pathogens affecting animal and human health.


Antibodies, Monoclonal , Mammals , Humans , Animals , Mice , Antibodies, Monoclonal/genetics , Major Histocompatibility Complex , Genes, MHC Class I , T-Lymphocytes
11.
J Biosci Bioeng ; 137(4): 321-328, 2024 Apr.
Article En | MEDLINE | ID: mdl-38342664

A novel, efficient and cost-effective approach for epitope identification of an antibody has been developed using a ribosome display platform. This platform, known as PURE ribosome display, utilizes an Escherichia coli-based reconstituted cell-free protein synthesis system (PURE system). It stabilizes the mRNA-ribosome-peptide complex via a ribosome-arrest peptide sequence. This system was complemented by next-generation sequencing (NGS) and an algorithm for analyzing binding epitopes. To showcase the effectiveness of this method, selection conditions were refined using the anti-PA tag monoclonal antibody with the PA tag peptide as a model. Subsequently, a random peptide library was constructed using 10 NNK triplet oligonucleotides via the PURE ribosome display. The resulting random peptide library-ribosome-mRNA complex was selected using a commercially available anti-HA (YPYDVPDYA) tag monoclonal antibody, followed by NGS and bioinformatic analysis. Our approach successfully identified the DVPDY sequence as an epitope within the hemagglutinin amino acid sequence, which was then experimentally validated. This platform provided a valuable tool for investigating continuous epitopes in antibodies.


Peptide Library , Peptides , Epitope Mapping/methods , Cost-Benefit Analysis , Peptides/genetics , Peptides/chemistry , Antibodies, Monoclonal/genetics , Epitopes/genetics , Epitopes/chemistry , Ribosomes/genetics , High-Throughput Nucleotide Sequencing , Computational Biology , RNA, Messenger
12.
Protein Expr Purif ; 217: 106445, 2024 May.
Article En | MEDLINE | ID: mdl-38342386

INTRODUCTION: The aim of this study was to compare two CRISPR/Cas9-based orthogonal strategies, paired-Cas9 nickase (paired-Cas9n) and RNA-guided FokI (RFN), in targeting 18S rDNA locus in Chinese hamster ovary (CHO) cells and precisely integrating a bicistronic anti-CD52 monoclonal antibody (mAb) expression cassette into this locus. METHODS: T7E1 and high-resolution melt (HRM) assays were used to compare the ability of mentioned systems in inducing double-strand break (DSB) at the target site. Moreover, 5'- and 3'-junction polymerase chain reactions (PCR) were used to verify the accuracy of the targeted integration of the mAb expression cassette into the 18S rDNA locus. Finally, anti-CD52 mAb gene copy number was measured and, its expression was analyzed using ELISA and western blot assays. RESULTS: Our results indicated that both paired-Cas9n and RFN induced DSB at the target site albeit RFN performance was slightly more efficient in HRM analysis. We also confirmed that the anti-CD52 mAb cassette was accurately integrated at the 18S rDNA locus and the mAb was expressed successfully in CHO cells. CONCLUSION: Taken together, our findings elucidated that both paired-Cas9n and RFN genome editing tools are promising in targeting the 18S rDNA locus. Site specific integration of the bicistronic anti-CD52 mAb expression cassette at this locus in the CHO-K1 cells was obtained, using RFN. Moreover, proper expression of the anti-CD52 mAb at the 18S rDNA target site can be achieved using the bicistronic internal ribosome entry site (IRES)-based vector system.


CRISPR-Cas Systems , Gene Editing , Cricetinae , Animals , Gene Editing/methods , Cricetulus , CHO Cells , Deoxyribonuclease I/genetics , Deoxyribonuclease I/metabolism , DNA, Ribosomal , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism
13.
Biotechnol J ; 19(2): e2300407, 2024 Feb.
Article En | MEDLINE | ID: mdl-38403434

Monitoring the stability of recombinant Chinese Hamster Ovary (CHO) cell lines is essential to ensure the selection of production cell lines suitable for biomanufacturing. It has been frequently observed that recombinant CHO cell lines develop phenotypic changes upon aging, such as accelerated cell growth in late generation cultures. However, the mechanism responsible for age-correlated changes is poorly understood. In this study, we investigated the molecular mechanisms underlying the age-correlated cell growth improvement in Pfizer's platform fed-batch production process, by examining multiple cell lines derived from different CHO expression systems, expressing a variety of monoclonal antibodies (mAbs). Comprehensive whole-genome resequencing analysis revealed duplication of a continuous 50.2 Mbp segment in chromosome 2 (Chr2) specific to clones that showed age-correlated growth change as compared to clones that did not exhibit age-correlated growth change. Moreover, such age- and growth-related Chr2 duplication was independent of the presence or type of recombinant monoclonal antibody expression. When we compared transcriptome profiles from low-growth and high-growth cell lines, we found that >95% of the genes overexpressed in high-growth cell lines were in the duplicated Chr2 segment. To the best of our knowledge, this is the first report of large genomic duplication, specific to Chr2, being associated with age-correlated growth change. Investigation of the cause-and-effect relationship between the genes identified in the duplicated regions and age-correlated growth change is underway. We are confident that this effort will lead to improved cell line screening and targeted rational cell line engineering efforts to develop cell lines with improved stability performance.


Antibodies, Monoclonal , Chromosomes, Human, Pair 2 , Cricetinae , Humans , Animals , Cricetulus , CHO Cells , Chromosomes, Human, Pair 2/metabolism , Recombinant Proteins/metabolism , Antibodies, Monoclonal/genetics
14.
Biotechnol Bioeng ; 121(4): 1355-1365, 2024 Apr.
Article En | MEDLINE | ID: mdl-38079069

N-linked glycosylation is one of the most important post-translational modifications of monoclonal antibodies (mAbs) and is considered to be a critical quality attribute (CQA), as the glycan composition often has immunomodulatory effects. Since terminal galactose residues of mAbs can affect antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytolysis (CDC) activation, serum half-life, and antiviral activity it has to be monitored, controlled and modulated to ensure therapeutic effects. The ability of small noncoding microRNAs (miRNAs) to modulate glycosylation in Chinese hamster ovary (CHO) production cells was recently reported establishing miRNAs as engineering tools for modulation of protein glycosylation. In this study, we report the characterization and validation of miRNAs as engineering tools for increased (mmu-miR-452-5p, mmu-miR-193b-3p) or decreased (mmu-miR-7646-5p, mmu-miR-7243-3p, mmu-miR-1668, mmu-let-7c-1-3p, mmu-miR-7665-3p, mmu-miR-6403) degree of galactosylation. Furthermore, the biological mode of action regulating gene expression of the galactosylation pathway was characterized as well as their influence on bioprocess-related parameters. Most important, stable plasmid-based overexpression of these miRNAs represents a versatile tool for engineering N-linked galactosylation to achieve favorable phenotypes in cell lines for biopharmaceutical production.


MicroRNAs , Animals , Cricetinae , MicroRNAs/genetics , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , CHO Cells , Cricetulus , Glycosylation
15.
Toxicol Ind Health ; 40(1-2): 69-74, 2024.
Article En | MEDLINE | ID: mdl-38095284

Trivalent lanthanide ions are known for their ability to interact with calcium-binding sites in various proteins. There is a need to assess the bioavailability of lanthanides and other heavy metals introduced into the body as components of implants or as contrast agents. This study aimed to develop a method to address bioavailability and/or presence of trivalent lanthanide ions by examining electrophoretic mobility in an agarose gel of a plasmid harboring the human metallothionein-II gene (hMT-II). Mobility of the plasmid was specifically altered by a monoclonal antibody raised against the zinc-binding transcription factor that controls the activity of the hMT-II gene. This study showed that the plasmid acquired a lanthanide-specific mobility pattern that allowed the presence of lanthanide ions to be readily determined in a 0.8% agarose gel. These findings suggest that this plasmid/monoclonal antibody combination under selected conditions may be useful in industrial, environmental, and biomedical settings to identify, separate, or capture lanthanide ions in complex mixtures that contain an array of metal ions.


Lanthanoid Series Elements , Metallothionein , Metals, Heavy , Humans , Antibodies, Monoclonal/genetics , Cations , Electrophoresis, Agar Gel , Lanthanum , Metallothionein/genetics , Plasmids/genetics , Sepharose
16.
SLAS Discov ; 29(1): 52-58, 2024 Jan.
Article En | MEDLINE | ID: mdl-37844762

N-linked glycosylation is a common post-translational modification that has various effects on multiple types of proteins. The extent to which an N-linked glycoprotein is modified and the identity of glycans species involved is of great interest to the biopharmaceutical industry, since glycosylation can impact the efficacy and safety of therapeutic monoclonal antibodies (mAbs). mAbs lacking core fucose, for example, display enhanced clinical efficacy through increased antibody-dependent cellular cytotoxicity. We performed a genome-wide CRISPR knockout screen in Chinese hamster ovary (CHO) cells, the workhorse cell culture system for industrial production of mAbs, aimed at identifying novel regulators of protein fucosylation. Using a lectin binding assay, we identified 224 gene perturbations that significantly alter protein fucosylation, including well-known glycosylation genes. This functional genomics framework could readily be extended and applied to study the genetic pathways involved in regulation of other glycoforms. We hope this resource will provide useful guidance toward the development of next generation CHO cell lines and mAb therapeutics.


Antibodies, Monoclonal , Genomics , Cricetinae , Animals , Cricetulus , Glycosylation , CHO Cells , Antibodies, Monoclonal/genetics
17.
Biotechnol Prog ; 40(1): e3399, 2024.
Article En | MEDLINE | ID: mdl-37874920

Monoclonal antibodies (mAbs) are effective therapeutic agents against many acute infectious diseases including COVID-19, Ebola, RSV, Clostridium difficile, and Anthrax. mAbs can therefore help combat a future pandemic. Unfortunately, mAb development typically takes years, limiting its potential to save lives during a pandemic. Therefore "pandemic mAb" timelines need to be shortened. One acceleration tool is "deferred cloning" and leverages new Chinese hamster ovary (CHO) technology based on targeted gene integration (TI). CHO pools, instead of CHO clones, can be used for Phase I/II clinical material production. A final CHO clone (producing the mAb with a similar product quality profile and preferably with a higher titer) can then be used for Phase III trials and commercial manufacturing. This substitution reduces timelines by ~3 months. We evaluated our novel CHO TI platform to enable deferred cloning. We created four unique CHO pools expressing three unique mAbs (mAb1, mAb2, and mAb3), and a bispecific mAb (BsAb1). We then performed single-cell cloning for mAb1 and mAb2, identifying three high-expressing clones from each pool. CHO pools and clones were inoculated side-by-side in ambr15 bioreactors. CHO pools yielded mAb titers as high as 10.4 g/L (mAb3) and 7.1 g/L (BsAb1). Subcloning yielded CHO clones expressing higher titers relative to the CHO pools while yielding similar product quality profiles. Finally, we showed that CHO TI pools were stable by performing a 3-month cell aging study. In summary, our CHO TI platform can increase the speed to clinic for a future "pandemic mAb."


Antibodies, Bispecific , Cricetinae , Animals , Cricetulus , Antibodies, Bispecific/genetics , CHO Cells , Antibodies, Monoclonal/genetics , Clone Cells
18.
Proteins ; 92(2): 206-218, 2024 Feb.
Article En | MEDLINE | ID: mdl-37795805

Therapeutic monoclonal antibodies are the most rapidly growing class of molecular medicine, and they are beneficial to the treatment of a broad spectrum of human diseases. However, the aggregation of antibodies during the process of manufacture, distribution, and storage poses significant challenges, potentially compromising efficacy and inducing adverse immune responses. We previously conceived a QTY (glutamine, threonine, tyrosine) code, a simple tool for enhancing protein water-solubility by systematically pairwise replacing hydrophobic residues L (leucine), V (valine)/I (isoleucine), and F (phenylalanine). The QTY code offers a promising alternative to traditional methods of controlling aggregation in integral transmembrane proteins. In this study, we designed variants of four antibodies applying the QTY code, changing only the ß-sheets. Through the structure-based aggregation analysis, we found that these QTY antibody variants demonstrated significantly decreased aggregation propensity compared to their wild-type counter parts. Our results of molecular dynamics simulations showed that the design by QTY code is capable of maintaining the antigen-binding affinity and structural stability. Our structural informatic and computational study suggests that the QTY code offers a significant potential in mitigating antibody aggregation.


Antibodies, Monoclonal , Tyrosine , Humans , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/chemistry , Tyrosine/metabolism , Molecular Dynamics Simulation , Threonine , Computational Biology/methods
19.
J Immunol Methods ; 525: 113602, 2024 02.
Article En | MEDLINE | ID: mdl-38103783

Characterizing antigen-specific B cells is a critical component of vaccine and infectious disease studies in rhesus macaques (RMs). However, it is challenging to capture immunoglobulin variable (IgV) genes from individual RM B cells using 5' multiplex (MTPX) primers in nested PCR reactions. In particular, the diversity within RM IgV gene leader sequences necessitates large 5' MTPX primer sets to amplify IgV genes, decreasing PCR efficiency. To address this problem, we developed a switching mechanism at the 5' ends of the RNA transcript (SMART)-based method for amplifying IgV genes from single RM B cells to capture Ig heavy and light chain pairs. We demonstrate this technique by isolating simian immunodeficiency virus (SIV) envelope-specific antibodies from single-sorted RM memory B cells. This approach has several advantages over existing methods for cloning antibodies from RMs. First, optimized PCR conditions and SMART 5' and 3' rapid amplification of cDNA ends (RACE) reactions generate full-length cDNAs from individual B cells. Second, it appends synthetic primer binding sites to the 5' and 3' ends of cDNA during synthesis, allowing for PCR amplification of low-abundance antibody templates. Third, the nested PCR primer mixes are simplified by employing universal 5' primers, eliminating the need for complex 5' MTPX primer sets. We anticipate this method will enhance the isolation of antibodies from individual RM B cells, supporting the genetic and functional characterization of antigen-specific B cells.


Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Macaca mulatta , Antibodies, Monoclonal/genetics , Memory B Cells , DNA, Complementary
20.
Planta ; 259(1): 15, 2023 Dec 10.
Article En | MEDLINE | ID: mdl-38071691

MAIN CONCLUSION: LSC CO17-1AK and anti-HER2 VHH-FcK can be produced in a single plant and exhibit anti-tumor activities comparable to those of their respective parent antibodies. Recombinant monoclonal antibodies (mAbs) which can be applied to treat various cancers, are primarily produced using mammalian, insect, and bacteria cell culture systems. Plant expression systems have also been developed to produce antibodies. Plant expression systems present several advantages, including a lack of human pathogenic agents, efficient production costs, and easy large-scale production. In this study, we generated a transgenic plant expressing anti-colorectal cancer large single chain (LSC) CO17-1AK and anti-human epidermal growth factor receptor 2 (HER2) VHH-FcK mAbs by cross-pollinating plants expressing LSC CO17-1AK and anti-HER2 VHH-FcK, respectively. F1 siblings expressing both LSC CO17-1AK and anti-HER2 VHH-FcK were screened using polymerase chain reaction and Western-blot analyses. The cell enzyme-linked immunosorbent assay (Cell ELISA) confirmed the binding of LSC CO17-1AK and anti-HER2 VHH-FcK to target proteins in the SW620 human colorectal cancer and the SKBR-3 human breast cancer cell lines, respectively. The wound healing assay confirmed the inhibitory activity of both antibodies against SW620 and SKBR-3 cell migration, respectively. In conclusion, both LSC CO17-1AK mAb and anti-HER2 VHH-FcK can be produced in a single plant, achieve binding activities to SW620 and SKBR-3 cancer cells, and inhibitory activity against SW620 and SKBR-3 cell migration similar to their parental antibodies, respectively.


Antibodies, Monoclonal , Mammals , Animals , Humans , Antibodies, Monoclonal/genetics , Plants, Genetically Modified/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Enzyme-Linked Immunosorbent Assay , Blotting, Western , Mammals/metabolism
...